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Abstract. Two ways of constructing maximal sets of mutually orthogonal Latin squares are presented.
The first construction uses maximal partial spreads in PG(3, 4)\ PG(3, 2) with r lines, where r ∈ {6, 7}, to

construct transversal-free translation nets of order 16 and degree r +3 and hence maximal sets of r +1 mutually
orthogonal Latin squares of order 16. Thus sets of t MAXMOLS(16) are obtained for two previously open cases,
namely for t = 7 and t = 8.

The second one uses the (non)existence of spreads and ovoids of hyperbolic quadrics Q+(2m +1, q), and
yields infinite classes of q2n−1 −1 MAXMOLS(q2n), for n ≥ 2 and q a power of two, and for n = 2 and q a power
of three.
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1. Introduction

Packing finite projective spaces with disjoint subspaces has for many years been a topic
of considerable interest in Galois Geometry. In particular, one studies partial spreads in a
space PG(3, q), that is, collections of pairwise disjoint lines in PG(3, q); see Hirschfeld [8]
for background. A set of r mutually skew lines for which any other line meets at least one
line of the set will be referred to as a maximal partial spread (MPS) of size r .



142 GOVAERTS ET AL.

An interesting combinatorial problem (which seems at first sight not at all related to
partial spreads) is the determination of the pairs (s, t) for which a maximal set of t mutually
orthogonal Latin squares of order s exist; we shall refer to such a set as t MAXMOLS(s).
This problem is, for instance, discussed in [2, Chapter X] and in [3, Section IV.27]; see also
[12] for a survey. We will be interested in the case s = 16. According to the tables in [3] and
some subsequent results of Drake et al. [5] and Bedford and Whitaker [1], MAXMOLS(16)
are known for t ∈ {1, 2, 3, 4, 11, 15}; by Bruck’s completion theorem, they cannot exist for
t = 13 and t = 14, cf. [2, Section X.7]. Using MPS’s in PG(3, 4), two of the present authors
[13] were recently able to construct sets of t MAXMOLS(16) for two previously undecided
cases, namely for t = 9 and t = 10. We shall use a similar approach already suggested in
[13] to construct sets of t MAXMOLS(16) for the two further values t = 7 and t = 8, thus
reducing the number of open cases to three; the remaining open cases are t = 5, t = 6, and
t = 12.

Let us briefly sketch the connection between partial spreads in PG(3, q) and sets of
mutually orthogonal Latin squares of order q2. Any r mutually skew lines in PG(3, q)

may be viewed as a collection of r pairwise disjoint subgroups of order q2 in the additive
group of the vector space V = V (4, q) (meaning, of course, that any two of these subgroups
intersect trivially). This is a particular example of a so-called partial congruence partition
(PCP) and therefore leads to a (translation) net of order s = q2 and degree r by taking the
vectors in V as points and all the translates of the specified r subgroups as lines, cf. [9] or
[2]. If the given partial spread is actually maximal, one may hope that the associated net is
likewise maximal, resulting in t = r −2 MAXMOLS(s), s = q2. This approach has been
used successfully by Jungnickel [10,11]. However, in general, the associated net may well
be extendable; it is easily seen that this happens if and only if the net admits a transversal,
i.e., a set of s points meeting every line of the net in a unique point.

In the present note, we will use maximal partial spreads of size r in PG(3, 4)\ PG(3, 2)

to construct transversal-free translation nets of degree r +3; this approach will give our
new examples of MAXMOLS(16).

We will also use results on the (non)existence of spreads and ovoids of the hyperbolic
quadric Q+(2m +1, q) to construct infinite classes of q2n−1 −1 MAXMOLS(q2n), for
n ≥ 2 and q a power of two, and for n = 2 and q a power of three. The first example arises
for q = 2 and n = 2, giving us 7 MAXMOLS(16) via a computer free method.

2. Partial Spreads in PG(3, 4)\PG(3, 2)

In what follows, we take PG(3, 2) to be the “natural” Baer subgeometry �0 of � =
PG(3, 4) which is coordinatized by the binary vectors in the vector space V = V (4, 4).
We shall denote the corresponding subgroup of order 16 of V by U , and write G F(4) =
{0, 1, ω, ω2}. Then U, ωU and ω2U are three pairwise disjoint subgroups partitioning the
quaternary vectors associated with the 15 points of �0; hence they may be added to the
r subgroups of V associated with any partial spread S of r lines in �\�0 to give a
PCP P with r +3 components, and one may hope that the associated translation net is
transversal-free (and hence the corresponding set of MOLS maximal) provided that S is
maximal.
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As already reported in [13], a computer search for maximal partial spreads in PG(3, 4)\
PG(3, 2) based on the computer program of [4] for determining the spreads in PG(3, 4)\
PG(3, 2) gave the following result:

PROPOSITION 1. A maximal partial spread of r pairwise skew lines in PG(3, 4)\ PG(3, 2)

exists if and only if 6 ≤ r ≤ 10 or r = 14.

It turns out that every maximal partial spread of 6 or 7 pairwise skew lines in PG(3, 4)\
PG(3, 2) gives rise to a transversal-free translation net of order 16 and degree 9 or 10,
respectively, as explained above. This follows from an exhaustive computer search. To fa-
cilitate this search, we will provide some auxiliary theoretical results which allow us to
reduce the complexity of the search considerably. As these results are appropriate mod-
ifications of similar results in our previous paper [13], we will leave some details to the
reader.

In what follows, we consider any fixed transversal T of the netD of degree r +3 associated
with the PCP P coming from a given MPS S of size r ∈ {6, 7} in �\�0. Without loss of
generality, we also assume that T contains the origin 0.

We begin with the following simple but useful result which is analogous to Lemma 3.3
of [13]. It concerns the holes of the MPS S, i.e., the points of �\�0 which are not covered
by a line of S.

LEMMA 2. The point 〈u〉 of � is a hole for every element u ∈ T \ {0}. Moreover, if 0, u, v

are three elements of T for which 〈u〉 and 〈v〉 are distinct points of �, then the “sum”
〈u +v〉 of these two holes is likewise a hole.

Proof. If 〈u〉 would be on a line of S or in �0, the corresponding subgroup U would
intersect the transversal T in the distinct elements 0 and u, a contradiction. Thus 〈u〉 is
indeed a hole. Now let 〈u〉 and 〈v〉 be distinct points of �, and assume 0, u, v ∈ T . We apply
the first assertion to the transversal T +u of D, noting u, 0, u +v ∈ T +u, to conclude that
〈u +v〉 is indeed a hole.

Let u ∈ T \ {0}. We call the hole 〈u〉 of �, respectively the point u of T , thin if 〈u〉∩ T =
{0, u}; semifat if |〈u〉∩ T | = 3; and fat if 〈u〉 ⊂ T . The major two theoretical steps consist of
showing that T more or less “contains” thin points only; this corresponds to Proposition 3.4
in [13]. Indeed, the proof for the following first result proceeds exactly as in [13].

PROPOSITION 3. There are no fat holes at all. Moreover, there exists at most one semifat
hole.

PROPOSITION 4. Every point u ∈ T \ {0} is actually thin provided that r = 7. If there exists
a semifat hole 〈u〉, u ∈ T \ {0}, for the case r = 6, then 〈u〉 lies on 13 lines each of which
contains precisely three further holes.

Proof. Assume the existence of a semifat point in T , say 0, u, λu ∈ T , where u 
= 0 and
λ 
∈ {0, 1}. As T has 16 elements, we get 13 vectors v ∈ T \ 〈u〉. For each choice of v, the
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points 〈u〉, 〈v〉, 〈u +v〉 and 〈λu +v〉 are holes (by Lemma 2). By Proposition 3, no point
〈v〉 can be semifat, and hence we get 3 ·13 points distinct from 〈u〉 in this way, all of which
are holes.

If we assume r = 7, then there are only 35 holes altogether, so that there must be holes
occurring in two different ways, say 0, u, λu, v, v′ ∈ T , where v′ gives a hole on the line L
through 〈u〉 and 〈v〉. As 〈v〉 is not semifat and as L cannot consist of holes only, we have

〈v′〉 
= 〈u〉, 〈v〉, 〈λ2u +v〉.
Without loss of generality, we may assume 〈v′〉 = 〈u +v〉 (otherwise we may replace u
by u′ = λu). Now there are three possibilities to consider. If v′ = u +v, the transversal
T +λu contains the elements 0 and (u +v)+λu = λ2u +v, contradicting our observation
that 〈λ2u +v〉 cannot be a hole. The case v′ = λ(u +v) leads to the same contradiction by
considering T +v and noting 〈λ(u +v)+v〉 = 〈λ2u +v〉. Finally, the case v′ = λ2(u +v)

is excluded as before by considering T +u.
For r = 6, we do not obtain a contradiction if we assume the existence of a semifat point,

as there will be altogether 40 holes in this case. But then the same reasoning as before
immediately gives the structural restriction stated in the assertion (the 13 lines are the lines
joining 〈u〉 to 〈v〉, with v ∈ T \ 〈u〉).

3. The Computer Searches

To perform the computer searches, we used GAP [7]. As already announced, the searches
established the following result.

THEOREM 5. Every maximal partial spread of 6 or 7 pairwise skew lines in PG(3, 4)\
PG(3, 2) gives rise to a transversal-free translation net of order 16 and degree 9 or 10,
respectively.

In order to establish Theorem 5, we have used the setup of the preceding section. In
particular, the restrictions in Proposition 4 considerably simplify the exhaustive search for
a possible transversal T of the translation net D constructed from an MPS S in PG(3, 4)\
PG(3, 2).

By Proposition 4, T gives rise to fifteen thin points of � provided that r = 7. The computer
searches of [4] and [13] show that there is (up to equivalence under P�L(4, 4)) only one
maximal partial spread of size r = 6 in PG(3, 4)\ PG(3, 2). It is a simple matter to check
that the 40 holes determined by this MPS do not form a configuration as described in
Proposition 4; thus T gives rise to fifteen thin points of � also for r = 6.

There is (up to equivalence under P�L(4, 4)) exactly one maximal partial spread of size
r = 7 in PG(3, 4)\ PG(3, 2). We checked this MPS and the one for r = 6; in both cases,
the corresponding net turned out not to admit a transversal (containing 0 and fifteen thin
points). This establishes Theorem 5. As an immediate consequence, we obtain the desired
new examples of MAXMOLS(16):

COROLLARY 6. There exist t MAXMOLS(16) for t = 7 and t = 8.
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We conclude this section with two remarks. As explained in Section 2, any MPS of
PG(3, 4)\ PG(3, 2) with size r yields a PCP P with r +3 components in the additive
group of the vector space V = V (4, 4). We may of course view this group as the additive
group of V (8, 2), and hence P can be considered as a partial 3-spread T in PG(7, 2). In
view of Theorem 5, the associated translation net is transversal-free for r ∈ {6, 7}; thus T
is maximal in these cases.

We know of the existence of maximal partial 3-spreads of size 9 in PG(7, 2). Namely,
the hyperbolic quadric Q+(7, 2) in PG(7, 2) has a spread consisting of nine 3-dimensional
subspaces [6,18,19]. This spread of Q+(7, 2) is maximal since an arbitrary 3-dimensional
space in PG(7, 2) intersects a hyperbolic quadric non-trivially.

On the other hand, the existence of a maximal partial 3-spread in PG(7, 2) of size 10
was not known. We summarize these observations in the following proposition.

PROPOSITION 7. There exist maximal partial 3-spreads of sizes 9 and 10 in PG(7, 2).

Our second remark concerns a failed attempt to find 12 MAXMOLS(16) by a similar
approach. It is known to be possible to find three pairwise disjoint Baer subgeometries
in PG(3, 4), actually even to partition PG(3, 4) into three Baer subgeometries and eight
lines. By a computer result of Penttila [16], there are precisely two such partitions up
to equivalence, see also Mellinger [15]. Motivated by this fact, we decided to look for
maximal partial spreads in �\ (B1 ∪ B2 ∪ B3), where the Bi are three pairwise disjoint
Baer subgeometries in � = PG(3, 4). Clearly the first Baer subspace B1 may always be
assumed to be the standard PG(3, 2). Also B2 can be chosen as a fixed Baer subspace skew
to B1, [15]. So, the difference in the tuples (B1, B2, B3) that need to be investigated, occurs
only in the third position; for the third Baer subspace B3 there are precisely three choices.

Now there exist maximal partial spreads of five mutually skew lines in �\ (B1 ∪ B2 ∪ B3).
Such an MPS S gives rise to a translation net D of order 16 and degree 14, by extending
the PCP associated with S with nine new components, three for each of the Baer subspaces
Bi (similar to the approach explained at the beginning of Section 2). We had hoped that
one might find a transversal-free translation net D and hence a corresponding set of 12
MAXMOLS(16) in this way, but unfortunately in all casesD turned out to have a transversal
PG(3, 2) (and thus to extend to an affine translation plane of order 16).

4. Infinite Classes of MAXMOLS Arising from Spreads of Q+(4n−1, q)

Consider the hyperbolic quadric Q+(2m +1, q) in PG(2m +1, q). A spread of this quadric
is a set of qm +1 pairwise disjoint generators, that is, a set of qm +1 pairwise disjoint
m-spaces on Q+(2m +1, q). An ovoid of this quadric is a set of qm +1 points on the
quadric such that no generator contains two of them.

It is known that for m even, the quadric Q+(2m +1, q) has no spread. For a survey on
(non)existence of spreads and ovoids we refer to [20].

THEOREM 8. Suppose that Q+(4n −1, q) has a spread and that Q+(4n +1, q) does not
have an ovoid. Then there exist q2n−1 −1 MAXMOLS(q2n).
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Proof. Start with a spreadS of Q+(4n −1, q) in PG(4n −1, q). Embed PG(4n −1, q) in
PG(4n, q) and consider the net whose points are the affine points of PG(4n, q) and whose
lines are the sets of affine points of (2n)-spaces in PG(4n, q) that intersect PG(4n −1, q)

in an element of S.
With this net corresponds a set of q2n−1 −1 MOLS(q2n). It suffices to show that the

net is transversal-free to prove that these MOLS are in fact MAXMOLS. Suppose, by
way of contradiction, that it admits a transversal T . Then T consists of q2n points of
PG(4n, q)\ PG(4n −1, q).

If P1 and P2 are points of T , then P1 P2 intersects PG(4n −1, q) in a point outside
Q+(4n −1, q). Indeed, otherwise this line would intersect PG(4n −1, q) in a point of an
element of S, say S, and the transversal T would contain at least two points of the line
〈P1, S〉 \ PG(4n −1, q) of the net.

Now in the dual space of PG(4n, q), PG(4n −1, q) becomes a point P , the elements
of S become (2n)-spaces through P , and Q+(4n −1, q) becomes a cone with vertex P
and base a quadric Q+(4n −1, q). The point P1 (P2) becomes a (4n −1)-space π1 (π2)
not through P and the line P1 P2 becomes a (4n −2)-space that intersects the cone in a
nonsingular quadric Q(4n −2, q).

Embed the cone in a nonsingular Q+(4n +1, q) in PG(4n +1, q) and apply the polarity
of Q+(4n +1, q). This polarity maps πi onto a bisecant to Q+(4n +1, q) through P ,
i = 1, 2. Call the second point of Q+(4n +1, q) on this line P ′

i . Then 〈P ′
1, P ′

2, P〉 intersects
Q+(4n +1, q) in a nonsingular conic, since π1 and π2 intersect in a space that has a
nonsingular intersection with Q+(4n +1, q).

Therefore the q2n +1 points P, P ′
1, P ′

2, . . . form an ovoid of Q+(4n +1, q), a contra-
diction.

COROLLARY 9. There exist q2n−1 −1 MAXMOLS(q2n) for n ≥ 2 and q even, and for n = 2
and q a power of three.

Proof. For these values for n and q it is known that Q+(4n −1, q) has a spread, see
Dye [6] and Thas [18,19], and that Q+(4n +1, q) does not have an ovoid, see Kantor [14]
and Shult [17].

Remark 10. For q = 2 and n = 2, we obtain 7 MAXMOLS(16). Hence, in addition to
Corollary 6, also a computer free construction of 7 MAXMOLS(16) is presented.
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